1) Find all \(x \in \mathbb{Z} \), \(0 \leq x < 77 \), satisfying the congruence \(x^2 + x - 6 \equiv 0 \pmod{77} \).

Solution: Since \(x^2 + x - 6 = (x - 2)(x + 3) \), for any prime \(p \),
\(x^2 + x - 6 \equiv 0 \pmod{p} \) \(\implies \) \(x - 2 \equiv 0 \pmod{p} \) or \(x + 3 \equiv 0 \pmod{p} \) \(\implies \)
\(x \equiv 2 \) or \(-3 \pmod{p} \).

So \(x^2 + x - 6 \equiv 0 \pmod{77} \) \(\implies \) \(x^2 + x - 6 \equiv 0 \pmod{7} \) and
\(x^2 + x - 6 \equiv 0 \pmod{11} \) \(\implies \) (\(x \equiv 2 \) or \(-3 \pmod{7} \)) and (\(x \equiv 2 \) or \(-3 \pmod{11} \)).

Hence by CRT, the solutions are \(x \equiv 2, 30, 46, 74 \pmod{77} \).

2) Find all \(k \in \mathbb{Z} \), \(0 < k < 19 \), which are primitive roots modulo 19.

Solution: First, try 2. \(2^2 \equiv 4, 2^3 \equiv 8, 2^4 \equiv 16, 2^5 \equiv 13, 2^6 \equiv 7, 2^7 \equiv 14, 2^8 \equiv 9, 2^9 \equiv 18 \equiv -1, 2^{10} \equiv -2 \equiv 17, 2^{11} \equiv -4 \equiv 15, 2^{12} \equiv -8 \equiv 11, 2^{13} \equiv -16 \equiv 3, 2^{14} \equiv -13 \equiv 6, 2^{15} \equiv -7 \equiv 12, 2^{16} \equiv -14 \equiv 5, 2^{17} \equiv -9 \equiv 10, 2^{18} \equiv 1 \pmod{19} \). Hence 2 is a primitive root modulo 19.

Now the other primitive roots will be \(2^i \) with \(\gcd(i, 18) = 1 \). Hence
\(2, 2^5, 2^7, 2^{11}, 2^{13}, 2^{17} \pmod{19} \), or \(2, 13, 14, 15, 3, 10 \) is the complete list of noncongruent primitive roots modulo 19.

3) Let \(p > 3 \) be a prime, \(S = \{ k \in \mathbb{Z} : \left(\frac{k}{p} \right) = 1, 0 < k < p \} \), and
\(N_p = \sum_{k \in S} k \).

a) Show that \(N_p \equiv 0 \pmod{p} \).

b) Find \(N_p \) if \(p \equiv 1 \pmod{4} \).
Solutions: a) By the sum of squares formula and the fact that

\[p > 5, \]

\[N_p \equiv \sum_{k \in S} k \equiv \sum_{i=1}^{(p-1)/2} i^2 \equiv \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \frac{p}{6} \equiv \frac{p^2 - 1}{24} \cdot p \equiv 0 \pmod{p} \]

b) If \(p \equiv 1 \pmod{4} \), then \(-1\) is a quadratic residue modulo \(p \). Hence

\[\left(\frac{p-k}{p} \right) = \left(\frac{-k}{p} \right) = \left(\frac{-1}{p} \right) \cdot \left(\frac{k}{p} \right) = \left(\frac{k}{p} \right) \]

and \(p-k \) is a quadratic residue modulo \(p \) iff \(k \) is. This means that the set \(T = \{ p-k : k \in S \} \) consists of quadratic residues modulo \(p \). As \(k \in S \implies 0 < p-k < p \) too, \(T = S \). Then:

\[N_p = \sum_{k \in S} k = \sum_{l \in T} (p-k) = \sum_{k \in S} p - \sum_{k \in S} k = \frac{p(p-1)}{2} - N_p \]

It follows that

\[N_p = \frac{p(p-1)}{4} \]

4) Let

\[f(n) = \begin{cases} 1 & \text{if } n = m^2, m \in \mathbb{Z}, \\ 0 & \text{otherwise} \end{cases} \]

and \(\lambda = \mu * f \) where \(\mu \) is the Möbius \(\mu \)-function.

a) Is \(f \) multiplicative? Is \(f \) completely multiplicative?

b) Express \(\lambda(n) \) explicitly in terms of the prime factorization \(n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r} \) of \(n \in \mathbb{Z}^+ \).

c) Is \(\lambda \) multiplicative? Is \(\lambda \) completely multiplicative?

d) Find the Euler product expansion of \(L_\lambda(s) = \sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} \).

e) Express \(L_\lambda(s) = \sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} \) in terms of the Riemann \(\zeta \)-function.

Solution: a) \(f \) is multiplicative: If \(n = ab \) and \(\text{gcd}(a,b) = 1 \), then \(n \) is a perfect square iff both \(a \) and \(b \) are. \(f \) is not completely multiplicative: \(f(5) = 0 \), but \(f(5^2) = 1 \neq 0 = f(5)^2 \).
b) \(\lambda(n) = \sum_{d \mid n} \mu(n/d)f(d) \). \(\mu(n/d) \) is nonzero only when \(n/d \) is square free and \(f(d) \) is nonzero only when \(d \) is a perfect square. If \(n = p_1^{k_1}p_2^{k_2} \cdots p_r^{k_r} \), then the product \(\mu(n/d)f(d) \) is nonzero only when \(d = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r} \) with \(e_i = 2[k_i/2] \). In this case \(n/d = \prod_{k_i \text{ odd}} p_i \) and \(\lambda(n) = (-1)^m \) where \(m \) is the number of odd \(k_i \). Equivalently, \(\lambda(n) = (-1)^{k_1+k_2+\cdots+k_r} \).

c) Since \(\mu \) and \(f \) are multiplicative, \(\lambda = \mu \ast f \) is also multiplicative. But more is true: \(\lambda \) is completely multiplicative.

The formula \(\lambda(n) = (-1)^{k_1+k_2+\cdots+k_r} \) remains valid even when some of \(k_i \)s are 0. Hence if \(p_1, p_2, \ldots, p_r \) are distinct primes, \(k_i, l_i, 1 \leq i \leq r \), are nonnegative integers, and \(n = p_1^{k_1}p_2^{k_2} \cdots p_r^{k_r}, m = p_1^{l_1}p_2^{l_2} \cdots p_r^{l_r}, \) then \(\lambda(n)\lambda(m) = (-1)^{\sum k_i}(-1)^{\sum l_i} = (-1)^{\sum (k_i+l_i)} = \lambda(nm) \).

d) Since \(\lambda \) is completely multiplicative,
\[
L_\lambda(s) = \sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} = \prod_p (1 - \lambda(p)p^{-s})^{-1} = \prod_p (1 + p^{-s})^{-1}
\]
e) Using the result of (d),
\[
L_\lambda(s) = \prod_p \frac{1}{1 + p^{-s}} = \prod_p \frac{1 - p^{-s}}{1 - p^{-2s}} = \frac{\zeta(2s)}{\zeta(s)}
\]
Or
\[
\lambda = \mu \ast f \implies L_\lambda(s) = L_\mu(s)L_f(s) = \frac{1}{\zeta(s)} \cdot \zeta(2s)
\]
as
\[
L_f(s) = \sum_{m=1}^{\infty} \frac{1}{m^{2s}} = \zeta(2s).
\]